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Methods & Techniques

GRADIENT PRO

Adaptive Baseline Policy Gradient Deep Q Network (DQN)

e Use Neural Networks to approximate Q(s,a) function
hen action space is large

Xperience Replay Buffer to reduce temporal
drrelation in learning, with greedy epsilon search

e Modify the final reward by reward subtracting
the baseline score

e Lower variance & converges faster compar
with Policy Gradient but less stable perfor

Advantage Actor Critic (A2C)

e Two networks, actor network and critic
e Less random variables and lower variance
need to balance variance and bias

DQN overestimates Q-function, DDQN fixes a target
- making it more stable, but slower at learning

Proximal Policy Optimization (PPO) Duelling DQN
* Clip the policy update in a trust region thus e Two networks, action selection and action evaluation
prevent large deviation e DQN overestimates Q-function, D2QN fixes by sampling

* More stable, converge faster, higher score Stable learning and performance




Results (Policy Gradient Pro X)

Adaptive Baseline Training Result
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Policy-based Test Results (500 Games)
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Results (DQN Pro)

DQN Training Result Double DQN Training Result
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Duelling DQN Training Result Value-based Test Results (1000 Games)
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Challenges & Solutions

Reward Shaping Helps to Learn

—— HNormal
—— Reward Shaping

Convergence & Stability

Speed up convergence and learning stability with
Reward Shaping, modify rewards of the
environment to encourage the agent to remain
close to the center
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473 episodes 1155 episgdes

Average Rewards

Policy Gradient Convergence

Issues with convergence due to changing - 00 600 800

environment with adaptive baseline. Fix the Episode Needed

environment to train and test on random (Top) Training a PPO model with and without reward shaping
environments. (Bottom) Network Architecture of Duelling DQN

Duelling Architectures

Introducing too many-hidden layers in the duelling
network structure causes a drop in performance




Demo

Baseline A2C PPO

Double DQN Duelling DQN

-rr .rr -ir .



